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SUMMARY

This work is concerned with the computation of incompressible axisymmetric and full three-dimensional
free-surface �ows. In particular, the circular-hydraulic jump is simulated and compared with approximate
analytic solutions. However, the principal thrust of this paper is to provide a real problem as a test bed
for comparing the many existing convective approximations. Their performance is compared; SMART,
HLPA and VONOS emerge as acceptable upwinding methods for this problem. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Every housewife has seen a hydraulic jump: turning a tap causes a jet of water to �ow
vertically downwards, impinge onto a horizontal surface, the sink, and spread out laterally
with an annular ridge appearing some distance from the point of impingement.
This paper is concerned with the simulation of the annular-hydraulic jump and with the

use of this real and commercially important problem to e�ect a comparison between existing
high-order upwind schemes. The simulations have been carried out using the axisymmetric
GENSMAC code [1] and the fully 3D version, Free�ow3D [2; 3]; both codes were developed
from GENSMAC [4], which in turn was strongly in�uenced by the Marker and Cell (MAC)
[5] and the Simpli�ed Marker and Cell (SMAC) [6], originating from Los Alamos in the
1960s.
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This paper begins with a discussion of our current understanding (and lack of understand-
ing) of the hydraulic jump. Di�erent approximations of the convective terms in the Navier–
Stokes equations are discussed. Then the axisymmetric GENSMAC is introduced, simulations
are performed and a comparison of the di�erent upwinding techniques with Watson’s [7]
(approximate) analytic results is e�ected, suggesting reasonable qualitative agreement for the
range of parameters for which the approximations are valid. This permitted a tentative ranking
of the upwind approximants. The convection schemes are then extended to three dimensions,
and the full 3D code, Free�ow3D, is applied for both planar and axisymmetric �ows. It is
shown to be capable of resolving the so-called Type I and Type II �ows at the jump. Again,
a comparison of various upwinding schemes is provided with evidence that SMART, HLPA
and VONOS are the only three capable of simulating the jet �ow for Reynolds numbers of
the order of 1000.

2. THE HYDRAULIC JUMP

The hydraulic jump, or standing wave, is the stationary counterpart of the tidal bore
(see Figure 1).
An understanding of the phenomenon is of commercial interest, since jet impingement is

often used in cooling systems and the slow �ow of the �uid beyond the jump can degrade
the e�ciency of the system. Despite this, the problem is not yet fully understood and does
not appear to have been properly simulated (although see Yokoi and Xiao [8] and Zhou and
Stansby [9]).
The �rst analytical study dates back to Lord Rayleigh [10], who derived the properties of

bores and jumps in open channels. Probably, the �rst author to study the radial spread of a
liquid jet over a horizontal plane was Watson [7], although earlier attempts include Kurihara
[11] and Tani [12]. Essentially, Watson developed two models: the �rst was an inviscid model,
where he assumed that the thrust of the pressure at the jump was equal to the rate at which
momentum was destroyed; his second approach, a viscous model, was to use the Prandtl

Figure 1. Example of a circular-hydraulic jump. (Reprinted with permission of Academic Press from
the book Modeling Axisymmetric Flows by Stanley Middleman.)
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Figure 2. Types of circular-hydraulic jumps: (a) Type I; (b) Type II.

boundary layer approximation. This, he argued, was valid up until the jump when recirculation
occurs and, using this theory, he established a similarity solution. Basically, Watson’s two
models provide estimates of the radial location of the jump. However, experimental tests have
not always agreed with these models and they have been numerous [13–17]. Some of these
investigations have found rough agreement with the (viscous) model, some have found good
agreement for a limited range of parameters and others have found relatively poor agreement.
In particular, Craik et al. [15] reported that Watson’s model works best when the jump radius
is more than 10 times the subcritical depth, with larger disagreement for smaller radii. From
this and the other discrepancies between Watson’s theory and the many experiments, it might
be surmised that Watson’s model is less accurate when the downstream �ow is too deep or
when the upstream-Froude number is too high.
A possible explanation for these di�erences may be that the �ow just behind the jump

can separate, creating a recirculating eddy attached to the horizontal surface (there is clear
experimental evidence for this). The separation is a result of the abrupt increase in hydrostatic
pressure at the jump, an e�ect that is clearly heightened when the downstream �ow is deeper.
Measurements by Craik et al. [15] and Errico [16] show that the separated region can be
quite long and that its length changes signi�cantly with the �ow conditions. Further, the
supercritical �lm is de�ected upwards and travels over the separated region while maintaining
a high speed. Clearly, a one-dimensional momentum conservation model could be a�ected by
the complex �ow �eld at the jump.
However, there are additional complications: it has been observed that the shape of the

jump can take di�erent forms—smooth, curved, showing standing or radiating waves, or dis-
playing clear instability. The parameters reported to be responsible for these changes include
downstream depth [15], increasing the volume �ow [16; 18] and increasing upstream Froude
number [14].
In recent experiments [19–21], the depth on the downstream side of the jump was controlled

by varying the height of a circular wall. Experimental results show that a circular-hydraulic
jump has two kinds of steady states (in addition to the unstable states alluded to above),
that are reached by varying the height of the circular wall. When the wall is small, or there
is no wall at all, a state with the eddy on the bottom horizontal surface is achieved as in
Figure 2(a). This �ow structure is called Type I. On increasing the wall height, the jump
becomes steeper until a critical wall height be attained. The liquid at the jump then topples
for wall heights larger than this critical value. This results in another steady state where, in
addition to the eddy on the bottom horizontal line, an eddy on the surface also appears (see
Figure 2(b)). This �ow structure is called Type II. Further, Ellegaard et al. [20; 21] have
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shown that, by varying the wall height when in a Type II �ow regime, a circular-hydraulic
jump can change into various regular polygonal shapes.
A systematic experimental programme has been carried out by Liu and Lienhard [22], in

which they attempt to map out under what circumstances the jump is unstable, of Type I, or
of Type II. Unfortunately, these results have all been performed at a high-Reynolds number
and so a comparison with the simulated results of this paper is not yet possible at the present
time.
Finally, an asymptotic high-Reynolds number analysis of the �ow, around the upstream end

of a laminar jump in a layer of uniform velocity with a thin viscous sublayer, was carried
out by Gajjar and Smith [23] using interacting boundary layer theory. Their analysis was
subsequently extended by Bowles and Smith [24] to large Froude number fully developed
layers, and again by Higuera [25; 26]. Despite all this research activity, the hydraulic jump is
not yet fully understood: it is, to quote Gajjar and Smith [23], clearly a complicated process.

2.1. Outline of Watson’s approximate analytical solution

By examining the velocity distribution of an axisymmetric jet impinging onto a �at surface,
Watson [7] developed, upstream of the jump, an approximate analytical solution based on
matching two boundary layer approximations for the thickness of the �uid layer. He also
obtained an analytical solution in the case of an inviscid �uid based on mass and energy
conservation. In this paper, we will refer to these two solutions as VISCOUS and INVISCID,
respectively. His principal results for the VISCOUS solution are now brie�y discussed.
Watson considered it advantageous to divide the �uid �ow into four regions; namely, (i)

near to the stagnation point, where the radial distance is r=O(a) and the boundary layer
thickness is �=O(�a=U0)1=2, with a and U0 being, respectively, the radius and speed of the
impinging jet, and � the kinematic viscosity coe�cient; (ii) for r� a, where the conditions in
region (i) are not important and the boundary layer is similar to the Blasius on a �at plate;
(iii) from the point where the boundary layer absorbs the layer of �uid to the point where
the velocity pro�le becomes self-similar; and (iv) at large distances from the stagnation point
where the �nal similarity solution is valid.
According to Watson’s analysis, the VISCOUS solution is valid only in regions (ii) and

(iv) for the Reynolds number R=Q=�a� 1; with Q=�a2U0 being the volumetric rate of
�ow. His approximate solution is not applicable in the vicinity of the stagnation point, since
the radial distance is r≈ a. Neglecting the transition region (iii) and using the technique of
K�arm�an–Pohlhausen [27], he matched the solutions in region (ii) given by the Blasius pro�le
and in region (iv) given by the velocity pro�le

u=U (r)f(z=�) (1)

where U (r) is the speed at the free surface and f is the similarity pro�le which depends on
a low-order representation of the Jacobian-elliptic function (see Watson [7], p. 484).
By using the approximate velocity pro�le (1) in the momentum integral equation, Watson

deduced the following explicit relation for the boundary layer thickness

r2�2 − c3
√
3

(�− c
√
3)

�r3

U0
=C (2)
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where c=1:402 and C is an integration constant. Based on an order of magnitude analysis,
he concluded that C=O(�a3=U0) in the region where r=O(a), and that C=O(a3=r3) in the
region where a�r¡r0, with r0 = 0:3155aRe1=3 being the radial position at which the boundary
layer just absorbs the �ow. This integration constant was considered to be negligible by
Watson and, as a result, he estimated the depth � of the �uid to be

�(r)= (a2=2r) + (1− (2�=3
√
3c2))� (3)

for r¡r0 and to be

�(r)=
2�2

3
√
3

�(r3 + l2)
Qr

(4)

for r¿r0, where l is an arbitrary constant which was estimated by considering the initial
development of the boundary layer to be l=0:567aR1=3.
Furthermore, applying the momentum balance and knowing the downstream �lm height d,

regarded as prescribed by the out�ow conditions, Watson derived expressions for the location
r= r1 at which the hydraulic jump must occur:

r1d2gza2

Q2 +
a2

2�2r1d
=0:01676((r1=a)3Re−1 + 0:1826)−1 (5)

for r1¿r0 and

r1d2gzd2

Q2 +
a2

2�2r1d
=0:10132− 0:1297(r1=a)3=2Re−1=2 (6)

for r1¡r0, where gz is the component of the gravitational acceleration in vertical direction z.
In Section 5 a quantitative comparison between Watson’s analytical predictions and nu-

merical results will be presented. An assessment of the error introduced in the analytical
approximation will also be undertaken.

3. GOVERNING EQUATIONS AND APPROXIMATION OF THE
CONVECTIVE TERMS

3.1. Basic equations

The conservation laws for time-dependent incompressible �uid �ow are the Navier–Stokes
equations and the continuity equation. In conservative vector form they are, respectively,
written as

@v
@t
+∇ · (vv) =−∇p+ 1

Re
∇2v+

1
Fr2

g (7)

∇ · v=0 (8)

where t is the time, v the velocity vector, p the kinematic pressure, g the gravitational
acceleration, and Re=U0D=� and Fr=U0=

√
D|g| the Reynolds and Froude numbers,
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respectively. The dependent variables in Equations (7) and (8) have been nondimensionalized
by a characteristic velocity U0, length scale D and reference kinematic viscosity �.

3.2. Approximation of the convective terms

It is now well established that the convective terms ∇ · (vv) in the Navier–Stokes equations
are responsible for most of the complex �ow phenomena. They are also the major cause
of numerical di�culties: the usual CD (Central Di�erence) scheme may lead to unphysical
oscillatory behaviour in regions of the �ow where convection dominates di�usion, and thereby
violating the boundedness of the solution; the classical FOU (First-Order Upwind) scheme
overcomes these di�culties, but it increasingly imparts errors, so-called numerical di�usion,
to the solution as the Pecl�et number is increased.
A number of high-order convection schemes have been developed over the years in order

to reduce unphysical numerical oscillations and, at the same time, minimize the e�ects of
arti�cial numerical di�usion. Early attempts were the SOU (Second-Order Upwind) scheme
[28] and the use of deferred correction with central di�erencing [29]. Leonard [30] com-
bined the accuracy of quadratic interpolation with stability to produce a third-order upwind
scheme. However, Quadratic Upstream Interpolation for Convective Kinematics (QUICK), as
Leonard’s scheme was called, can introduce undershooting and overshooting in regions of
high velocity gradients. To circumvent these di�culties, Gaskell and Lau [31] introduced the
Sharp and Monotonic Algorithm for Realistic Transport (SMART) method. SMART has the
high order of the QUICK with the advantage of boundedness, that is, the calculated velocity
is never allowed below or above the minimum or maximum neighbouring velocities.
Other oscillation-free convection schemes then followed. Zhu [32] developed a second-order

scheme called Hybrid-Linear Parabolic Approximation (HLPA), while Varonos and Bergeles
[33] obtained a second=third-order method Variable-Order Non-Oscillatory Scheme (VONOS).
This method was based on Bounded Second-Order Upwind (BSOU) of Papadakis and Bergeles
[34] and the QUICK scheme. A comparison between SMART, VONOS and NOTABLE, a
scheme of Pascau and Perez [35], was made using the driven-cavity problem: the results
favoured the VONOS scheme.
In summary, these convection schemes can be written down as follows. Consider Figure 3

for approximating the partial derivative of a generic variable � at the point P0 say [@�=@s],
where s represents one of the independent variables x; y, or z, and �A; �B are values of the
generic variable at the points PA and PB, respectively.
The �rst derivative may be approximated (for example at P0) by the expression

@�
@s

∣∣∣∣
P0

=
�B − �A

�s
:

By using each of the schemes mentioned above, the values of �A and �B are obtained in
terms of the neighbouring-grid values �−2; : : : ; �2 and the convective-velocity directions VA
and VB by setting:

• FOU:

�B=

{
�0; if VB¿0
�1; otherwise;

�A=

{
�−1; if VA¿0
�0; otherwise
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Figure 3. Stencil used for calculating �A and �B using various schemes.

• CD:

�B=
�1 + �0
2

; �A=
�0 + �−1

2
• QUICK:

�B=



3
8
�1 +

6
8
�0 − 1

8
�−1; if VB¿0

3
8
�0 +

6
8
�1 − 1

8
�2; if VB¡0

�A=



3
8
�0 +

6
8
�−1 − 1

8
�−2; if VA¿0

3
8
�−1 +

6
8
�0 − 1

8
�1; if VA¡0

• SMART:

if VB¿0; �B=




�0; if �̂0 =∈[0; 1]
10�0 − 9�−1; if �̂0∈[0; 3=74)
3
8
�1 +

6
8
�0 − 1

8
�−1; if �̂0∈[3=74; 5=6)

�1; if �̂0∈[5=6; 1]

if VB¡0; �B=




�1; if �̂1 =∈[0; 1]
10�1 − 9�2; if �̂1∈[0; 3=74)
3
8
�0 +

6
8
�1 − 1

8
�2; if �̂1∈[3=74; 5=6)

�0; if �̂1∈[5=6; 1]

if VA¿0; �A=




�−1; if �̂−1 =∈[0; 1]
10�−1 − 9�−2; if �̂−1∈[0; 3=74)
3
8
�0 +

6
8
�−1 − 1

8
�−2; if �̂−1∈[3=74; 5=6)

�0; if �̂−1∈[5=6; 1]
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if VA¡0; �A=




�0; if �̂0 =∈[0; 1]
10�0 − 9�1; if �̂0∈[0; 3=74)
3
8
�−1 +

6
8
�0 − 1

8
�1; if �̂0∈[3=74; 5=6)

�−1; if �̂0∈[5=6; 1]
• HLPA:

if VB¿0; �B=

{
�0; if �̂0 =∈[0; 1]
�0 + (�1 − �0)�̂0; if �̂0∈[0; 1]

if VB¡0; �B=

{
�1; if �̂1 =∈[0; 1]
�1 + (�0 − �1)�̂1; if �̂1∈[0; 1]

if VA¿0; �A=

{
�−1; if �̂−1 =∈[0; 1]
�−1 + (�0 − �−1)�̂−1; if �̂−1∈[0; 1]

if VA¡0; �A=

{
�0; if �̂0 =∈[0; 1]
�0 + (�−1 − �0)�̂0; if �̂0∈[0; 1];

• VONOS:

if VB¿0; �B=




�0; if �̂0 =∈[0; 1]
10�0 − 9�−1; if �̂0∈[0; 3=74)
3
8
�1 +

6
8
�0 − 1

8
�−1; if �̂0∈[3=74; 1=2)

1:5�0 − 0:5�−1; if �̂0∈[1=2; 2=3)
�1 if �̂0∈[2=3; 1]

if VB¡0; �B=




�1; if �̂1 =∈[0; 1]
10�1 − 9�2; if �̂1∈[0; 3=74)
3
8
�0 +

6
8
�1 − 1

8
�2; if �̂1∈[3=74; 1=2)

1:5�1 − 0:5�2; if �̂1∈[1=2; 2=3)
�0 if �̂1∈[2=3; 1]

if VA¿0; �A=




�−1; if �̂−1 =∈[0; 1]
10�−1 − 9�−2; if �̂−1∈[0; 3=74)
3
8
�0 +

6
8
�−1 − 1

8
�−2; if �̂−1∈[3=74; 1=2)

1:5�−1 − 0:5�−2; if �̂−1∈[1=2; 2=3)
�0 if �̂−1∈[2=3; 1]
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Figure 4. CBC region in the �̂F − �̂U plane.

if VA¡0; �A=




�0; if �̂0 =∈[0; 1]
10�0 − 9�1; if �̂0∈[0; 3=74)
3
8
�−1 +

6
8
�0 − 1

8
�1; if �̂0∈[3=74; 1=2)

1:5�0 − 0:5�1; if �̂0∈[1=2; 2=3)
�−1; if �̂0∈[2=3; 1]

The expressions for �̂U ; (U =−1; 0; 1), appearing in the SMART, HLPA and VONOS
schemes, are de�ned by the normalized variable formulation of Leonard [30] as

�̂U =
�U − �R

�D − �R
(9)

where the downstream, upstream, and remote-upstream neighbouring nodes, labelled respec-
tively as D; U and R, are taken relative to the point F (F =A; B), according to the convective-
velocity direction there. For example, consider the point A between nodes −1 and 0 as shown
in Figure 3, and assume that the velocity at this point is greater than zero (VA¿0). Then,
relative to this point, the neighbouring nodes D; U and R would correspond to the nodes
0; −1 and −2, respectively.
It should be pointed out that, based on the local direction of �ow, the concept of vari-

able normalization proposed by Leonard and his monotonicity criterion constitute the basis
on which high-order oscillation-free convection schemes are constructed. If at most three
neighbouring nodal values are used to approximate point values, such as those appearing in
Equation (9), then a necessary and su�cient condition for guaranteeing a bounded solution
is the Convection Boundedness Criterion (CBC), formulated by Gaskell and Lau [31]. In
this context, the four schemes FOU, SMART, HLPA and VONOS unconditionally satisfy the
CBC, while the schemes CD and QUICK only conditionally satisfy the CBC. The CBC is
illustrated in Figure 4, where the line �̂F = �̂U and the shaded area form the region over
which it is valid.
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4. AXISYMMETRIC NAVIER–STOKES EQUATION

4.1. Brief description of the axisymmetric GENSMAC code

The axisymmetric GENSMAC code [1] solves the Navier–Stokes equations and the continuity
equation for an incompressible-viscous �uid (Equations (7) and (8)). It is an updated version
of the SMAC method [6] for calculating time-dependent free-surface �ow, employing pressure
and velocity as the primary dependent variables. It uses a �nite-di�erence approach on a
staggered grid. An adaptive time-stepping technique has been implemented and a conjugate-
gradient solver is employed to solve the discrete Poisson equation. The code is designed
to deal with moving free-surface �ows within a general domain containing free-slip and=or
no-slip rigid boundaries.

4.1.1. Basic equations. In cylindrical coordinates, Equations (7) and (8) may be expressed
in conservative form as

@u
@t
+
1
r
@(ruu)
@r

+
@(uv)
@z

=−@p
@r
+
1
Re

@
@z

(
@u
@z

− @v
@r

)
+

1
Fr2

gr; (10)

@v
@t
+
1
r
@(ruv)
@r

+
@(vv)
@z

=−@p
@z

− 1
Re
1
r

@
@r

(
r
(
@u
@z

− @v
@r

))
+

1
Fr2

gz (11)

1
r
@(ru)
@r

+
@v
@z
=0 (12)

where u and v are, respectively, the radial and vertical components of the velocity �eld.
All other variables and parameters were previously de�ned. Full details of the axisymmetric
GENSMAC code have recently appeared in Reference [1], and the reader is referred to this
article. However, for continuity in this paper, we provide an outline of the boundary conditions
and solution procedure.

4.1.2. Boundary conditions. Boundary conditions must be imposed on �xed boundaries and
free surfaces. On �xed boundaries, we can impose no-slip, free-slip, prescribed in�ow, pre-
scribed out�ow and continuative out�ow (for details, see Tom�e and McKee [4], Amsden and
Harlow [6]). The implementation of these boundary conditions is performed in the same way
as in the GENSMAC code. The appropriate free-surface boundary conditions are the vanishing
of the normal and tangential stresses which, in the absence of surface tension, are [36]

n ·� · n=0 (13)

m ·� · n=0 (14)

where n and m are, respectively, local-unit normal and tangential vectors, and � is the stress
tensor given by

�ij=−p�ij +
2
Re

(
@vi
@xj

+
@vj
@xi

)
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These conditions are applied by making accurate local �nite-di�erence approximations on the
free surface. Details of the application of the stress conditions are given in Tom�e and McKee
[4]. The appropriate boundary conditions for the Poisson equation (18) are homogeneous
Dirichlet-type on the free surface and homogeneous Neumann-type on �xed boundaries.

4.1.3. Solution procedure. In order to solve Equations (10)–(12), we employ the
GENSMAC methodology. In particular, when calculating ũ(r; z; t) in step 2, we employ an
adaptive time stepping routine. It is supposed that, at a given time t= t0, the solenoidal-velocity
�eld u(r; z; t0) is known and suitable boundary conditions for the velocity and pressure are
given. The updated velocity �eld u(r; z; t), at t= t0 + �t, is calculated as follows:

1. Let p̃(r; z; t) be an arbitrary pressure �eld, which satis�es the correct pressure condition
on the free surface. This pressure �eld is constructed employing the normal-stress condi-
tion (13) at the free-surface cells, and it is chosen arbitrarily (for instance p̃(r; z; t)=0)
at the interior cells;

2. Calculate the intermediate velocity �eld ũ(r; z; t) from the explicitly discretised form of

@ũ
@t
=
[
−1

r
@(ruu)
@r

− @(uv)
@z

− @p̃
@r
+
1
Re

@
@z

(
@u
@z

− @v
@r

)
+

1
Fr2

gr

]
t=t0

(15)

@ṽ
@t
=
[
−1

r
@(ruv)
@r

− @(vv)
@z

− @p̃
@z

− 1
Re
1
r

@
@r

(
r
(
@u
@z

− @v
@r

))
+

1
Fr2

gz

]
t=t0

(16)

with ũ(r; z; t0)= u(r; z; t0), using the correct boundary conditions for u(r; z; t0). It can be
shown that ũ(r; z; t) possesses the correct vorticity at time t. However, ũ(r; z; t) does not
satisfy Equation (12), in general. Let

u(r; z; t)= ũ(r; z; t)−∇ (r; z; t) (17)

with  an auxiliary potential �eld such that

∇2 (r; z; t)=∇ · ũ(r; z; t): (18)

Thus, u(r; z; t) now satis�es Equation (12) and the vorticity remains unchanged.
Therefore, u(r; z; t) is identi�ed as the updated velocity �eld at time t;

3. Solve the Poisson equation (18);
4. Compute the velocity �eld (17);
5. Compute the pressure. It can be shown that the pressure is given by

p(r; z; t)= p̃(r; z; t) +  (r; z; t)=�t (19)

6. Update the positions of the marker particles.

The last step in the calculation involves moving the marker particles to their new positions.
These are virtual particles (without mass, volume, or other properties), whose coordinates are
stored and updated at the end of each cycle by solving the ordinary di�erential equations

dr
dt
= u;

dz
dt
= v
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by Euler’s method. This provides a particle with its new coordinates, allowing us to determine
whether or not it has moved into a new computational cell, or if it has left the containment
region through an out�ow-boundary.
In Equations (15) and (16), the viscous terms and the pressure gradient are approximated

using standard second-order �nite di�erences, while the temporal derivative is discretized using
a forward di�erence. However, the convective terms will be approximated by the various high-
order upwind schemes presented in Section 3. The Poisson equation (18) is discretized using
the usual �ve-point Laplacian operator, and the corresponding symmetric-positive de�nite
linear system is solved by the conjugate-gradient method (e.g. Ortega [37]).

5. NUMERICAL RESULTS OF THE AXISYMMETRIC CODE

The purpose of this section is three-fold. First, we wish to demonstrate that certain known
complex features of the circular-hydraulic jump are capable of being resolved. In particular,
we exhibit Type I and II �ows with the single and double roller, respectively. This not only
provides partial validation of the code (it has, of course, been substantially validated in an
earlier paper [1] but also, for the �rst time, demonstrates that a proper simulation of these
features is possible. Secondly, we wish to compare numerical solutions obtained with the
approximate analytic results of Watson [7] where appropriate. Finally, we wish to compare
the di�erent convective approximations against Watson’s solution and thereby attempt to say
which are acceptable and which are not.
The convective schemes of Section 3 have been implemented in the axisymmetric GENS-

MAC code. We shall consider a vertical jet impinging onto a �at surface and spreading out
into a thin �lm �owing radially away from the stagnation point (see Figure 5). The following
input data are employed.

(i) Circular hydraulic jump of Type I:

• Domain dimensions: 0:05 m×0:03 m; Inlet diameter (D): 0:008 m;
• Inlet velocity (U0): 0:375 ms−1; Gravitational constant (g): 9:81 ms−2;
• Kinematic viscosity (�): 1:2×10−5 m2s−1; Scaling parameters: D=0:008 m,

U0 = 0:375 ms−1;

Figure 5. Flow description for an impinging jet simulation.
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• Reynolds number (Re=U0D=�): 250; Froude number (Fr=U0=
√
gD): 1.3386;

• Height of the in�ow above the �at surface (h): 0:03 m.

(ii) Circular hydraulic jump of Type II:

• Domain dimensions: 0:05 m×0:03 m; Inlet diameter (D): 0:008 m;
• Inlet velocity (U0): 0:375 ms−1; Gravitational constant (g): 9:81 ms−2;
• Kinematic viscosity (�): 3:75×10−6 m2 s−1; Scaling parameters: D=0:008 m,

U0 = 0:375 ms−1;
• Reynolds number (Re=U0D=�): 800; Froude number (Fr=U0=

√
gD): 1.3386;

• Height of the in�ow above the �at surface (h): 0:03 m.

Figure 6 shows the results of the hydraulic jump simulation using the VONOS implementation
for two di�erent choices of Reynolds number. Figure 6(a) displays the result of Type I �ow
and Figure 6(b) corresponds to the Type II �ow.
In this �gure, the curve represents the free surface, while the arrows indicate the direction of

the velocity vectors. One can see from Figure 6 that the results obtained by the axisymmetric
GENSMAC code display the �ow structures appearing in Figure 2. In particular, Figure
6(a) shows the existence of separating rotational �ow formed on the bottom interface in
conjunction with the jump. Moreover, this recirculation region is, qualitatively, in accordance
with experimental results of Tani [12], Craik et al. [15] and Bowles and Smith [24].
In order to e�ect a comparison with Watson’s approximate analytic solution, we consider

the same input data as for a Type II jump, except for the inlet velocity U0 and the coe�-
cient of viscosity �. In this problem, U0 = 1 ms−1 and �=10−5 m2 s−1. The Froude number
(Fr=3:5696), based on the inlet velocity and inlet diameter, is chosen to be su�ciently
large to prevent the formation of a hydraulic jump before the jet reaches the out�ow-
boundary. The numerical solutions are then compared to the analytic solutions given by
Watson [7].
The axisymmetric GENSMAC code was run on this problem, until the jet reached the

out�ow-boundary. Two runs were performed for each of the convective approximations. For
the �rst run, a mesh size of 100× 60 cells (�r= �z=5:0× 10−3 m), known hereafter as
Mesh I, was employed while in the second run was used a mesh size of 200× 120 cells
(�r= �z=2:5× 10−3m); this will be referred to as Mesh II. Figure 7 displays the �uid surface
at time t=8:0s for Mesh II using the various convective implementations, including the FOU.
It can be observed, from this �gure, that QUICK, SMART, VONOS and HLPA gave similar
results, while the FOU produced a much thicker jet due to its intrinsic arti�cial–numerical
dissipation.
A comparison was then made between the surface height, obtained from the numerical

solution, and the VISCOUS (Equations (3) and (4)) and INVISCID solutions; this is dis-
played in Figure 8. The numerical results were calculated on Mesh II using the upwind
schemes QUICK, SMART, VONOS, HLPA and FOU. We restricted the analysis to the re-
gion 0:2¡(r=a)R−1=3¡1:0 (where R=�aU0=�=�Re=2≈ 1; 257) because of the restriction r�a
and the presence of the out�ow-boundary which is close to (r=a)R−1=3 = 1:0. It can be seen
from Figure 8(a)–(d) that the results obtained using QUICK, SMART, VONOS and HLPA
are very similar, showing a small di�erence when compared to the VISCOUS solution. We
believe that most of this di�erence may be attributed to the approximations made in obtaining
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Figure 6. Results of the numerical simulation of the hydraulic jumps using the VONOS
scheme, showing �uid surface (curve) and velocity vectors (arrows): (a) Type I

(single roller, Re=250); (b) Type II (double roller, Re=800).

the VISCOUS solution. In fact, when the grid was re�ned, with a mesh size of 400× 240
cells (Mesh III, �z= �r=1:25×10−4m), the numerical solution converged to a solution close
to that obtained with Mesh II for the four schemes. Figure 8(f) shows the numerical solution
in the three meshes using the HLPA scheme. We point out that the FOU solution on Mesh II
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Figure 7. Jet surface at time t=8:0 s using the various convection approximations on Mesh II:
(a) QUICK; (b) VONOS; (c) SMART; (d) FOU; (e) HLPA.

(Figure 8(e)) deviates considerably from the VISCOUS solution, with a behaviour that veers
away from that of the INVISCID curve as (r=a)R−1=3 increases. The thickness of the �uid
layer due to FOU solution is much greater than that of the analytical solution on most of the
region of interest. This we attribute to the fact that the FOU solution introduces considerable
arti�cial–numerical viscosity.
A quantitative analysis, using the l2 norm, of the error between the numerical solutions and

VISCOUS solution, for Meshes I, II and III, is summarized in Table I. These results quantify
the observations regarding Figure 8. Again, QUICK, SMART, VONOS and HLPA show very
similar results with a relatively small error; QUICK and HLPA giving the best results on
Mesh II, and SMART and VONOS giving the best results on Mesh III. The classical FOU
shows a much larger error on Meshes II and III. Surprisingly, the FOU results for Mesh I
are somewhat better when compared with those of Meshes II and III. Nevertheless, they are
much worse than that ones obtained by the other convection schemes.
The discrepancy between the approximate analytical solution, developed by Watson, and

the numerical solution, obtained by axisymmetric GENSMAC code, can be seen by using
the explicit relation (2) for the boundary layer thickness. Figure 9(a) shows the behaviour of
the boundary layer thicknesses derived by Watson (WATSON) and that obtained using the
GENSMAC code (GENSMAC) with the VONOS scheme on Mesh II. From this �gure, it
is clear that the axisymmetric GENSMAC code correctly predicts the boundary layer growth
far from the stagnation point ((r=a)R−1=3¿0:2). Figure 9(b) displays the error distribution
(C=C((r=a)R−1=3)) given by Equation (2). It is from this �gure that the disagreement between
theory and numerics may be attributed to the fact that Watson neglects the integration constant
C everywhere in his approximate analytical solution.
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Figure 8. Comparison between the numerical (axisymmetric GENSMAC code) and approximate ana-
lytic solutions (Watson): (a)–(e) show the comparisons using various upwind schemes on Mesh II;

(f) shows the numerical solution using the HLPA scheme on Meshes I, II and III.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:549–583



HIGH-ORDER UPWINDING AND THE HYDRAULIC JUMP 565

Table I. Normalized l2-errors in the surface height (‖�VISCOUS − �Numerical‖2)=‖�VISCOUS‖2).
Mesh QUICK SMART VONOS HLPA FOU

I (100× 60) 0.2181066 0.2181084 0.2116055 0.2121379 0.3260995
II (200× 120) 0.0609543 0.0622931 0.0704282 0.0613914 0.4621081
III (400× 240) 0.0554971 0.0510175 0.0499362 0.0521920 0.3911262

Figure 9. (a) Boundary-layer thickness obtained by Watson (WATSON) and GENSMAC code
(GENSMAC); (b) Watson’s error distribution.

6. 3D NAVIER–STOKES EQUATION

6.1. Basic equations and method of solution

6.1.1. Basic equations. In three-dimensional Cartesian coordinates, Equations (7) and (8) may
be written as

@u
@t
+

@(uu)
@x

+
@(vu)
@y

+
@(wu)
@z

=−@p
@x
+
1
Re

[
@2u
@x2
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]
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@w
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+
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+
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]
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@u
@x
+

@v
@y
+

@w
@z
=0 (23)

where all variables and parameters have been de�ned previously.
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Figure 10. Typical cell showing the location of the dependent variables.

The method of solution is essentially the same as that given in Section 4 for axisymmetric
�ows. A full description, especially on how to implement the boundary conditions, can be
found in Castelo et al. [2] or Tom�e et al. [3].

6.1.2. Discretization. It is helpful and probably necessary to provide a description of
how the convective terms are dealt with. Firstly, to solve the explicit discretization of
Equations (20)–(22) we employ, as before, a �nite di�erence method on a staggered
grid; a typical cell showing the physical locations at which the dependent variables are
de�ned is illustrated in Figure 10. The convective-transport terms are approximated using
the various di�erencing schemes presented in Section 3. Thus, the discretized versions of
Equations (20)–(22) and Poisson equation (18) are, respectively, given by

�ui+ 1
2 ; j; k

= ui+ 1
2 ; j; k

− �t
[
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Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:549–583



HIGH-ORDER UPWINDING AND THE HYDRAULIC JUMP 567
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In Equations (24)–(26), CONV(�); �= u, v or w, represents the convective terms evaluated
at appropriate grid nodes. The �nite-di�erence approximations for these terms will be given
in the next sub-section.

6.1.3. Finite-di�erence approximation of the convective terms. We now consider the appli-
cation of the various convection schemes to three-dimensional �ows. For brevity, only the
discretization of the convective terms in the x-momentum equation is given; the other two
momentum components are treated similarly.
At the node (i + (1=2); j; k), the convective term CONV(u) can be written as[
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where the derivatives are approximated by
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The convective velocities appearing in Equations (29)–(31) are obtained by averaging;
namely,
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We shall present the �nite-di�erence equations for computing the �rst derivative in Equa-
tion (29). The corresponding di�erence equations for calculating the other derivatives in Equa-
tions (30) and (31) are again obtained similarly. Firstly, let us de�ne the
parameters

Si+1; j; k =

{
0; if �ui+1; j; k¿0

1; otherwise;
and Si; j; k =

{
0; if �ui; j; k¿0

1; otherwise
(32)

Then, the velocities ui; j; k and ui+1; j; k appearing in Equation (29) can be obtained by the
following convection approximations:
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VONOS:
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
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�̂i; j; k = (1− Si; j; k)
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


7. NUMERICAL RESULTS FOR 3D NAVIER–STOKES EQUATION

In Section 5 we provided numerical calculations using the axiysmmetric code. The essential
two-dimensional nature of this code permitted good resolution, so much so that we were able
to demonstrate the single and double roller e�ects in the circular-hydraulic jump. Unfortu-
nately, although this quality of resolution is not yet possible for a time-dependent three-space
dimensional code, Free�ow3D has the advantage of a customized solid modelling visualization
facility. This provides immediate and dramatic feedback on the various convective approx-
imants, as it can be seen from Figures 11–15. The various convection schemes presented

Figure 11. 3D simulation using the VONOS scheme showing: (a) the geometry and the free-surface
at time t=0:138 s; (b) free-surface at time t=0:588 s.
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Figure 12. Three-dimensional view of the numerical simulation of an axisymmetric jet impinging onto
a horizontal �at surface at t=0:035s for increasing Reynolds numbers and using the various convection

schemes. First column: Re=10; second column: Re=102; third column: Re=103.

in Section 3 have been implemented in the Free�ow3D code and the code has been used
to simulate the �ow of a jet impinging onto a �at surface at increasing Reynolds numbers.
Two shapes of jets were considered: an axisymmetric and a planar jet. In addition, in order
to study the relative e�ectiveness of these convective approximations, we applied the code to
simulate the phenomenon of the circular-hydraulic jump with a Newtonian �uid at Re=400.
The results are as follows.
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Figure 12. (Continued)

7.1. Simulation of the axisymmetric jet onto a �at plate

An axisymmetric jet of viscous �uid was projected onto a horizontal surface at a prescribed
velocity. The following input data were used:

• Domain dimensions: 0:04 m× 0:04 m× 0:06 m;
• Mesh size: 80× 80×120 cells (�x= �y= �z=0:0005 m);
• Flat surface dimensions: 0:04 m× 0:04 m× 0:0015 m;
• In�ow dimensions: diameter (D)=0:008m and height (h)=0:01m; The in�ow is situated
at a distance of 0:05 m above the �at surface;
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Figure 13. Three-dimensional view of the numerical simulation of a planar jet impinging onto a hor-
izontal �at surface at t=0:045 s for increasing Reynolds numbers and using the various convection

schemes. First column: Re=10; second column: Re=102; third column: Re=103.

• In�ow velocity: U0 = 1 ms−1;
• Scaling parameters: U0 = 1 ms−1, D=0:008 m;
• Gravity was acting in the z-direction, with g=−9:81 ms−2;
• Froude number: Fr=3:569;
• Convergence criterion for the conjugate gradient methods: EPS=10−7.
The Free�ow3D code simulated the problem described above using each of the schemes:

FOU, CD, QUICK, SMART, HLPA and VONOS. The following values of the kinematic
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Figure 13. (Continued)

viscosity �=8× 10−4, 8× 10−5 and 8× 10−6 m2 s−1 were used. These produced Reynolds
numbers of 10, 102 and 103, respectively. A time-step size of �t≈ 10−6 s was used in all these
runs (it is, of course, not possible to be precise here, since the code employs an automatic
time-step generator (see Tom�e and McKee [4])). In total, 18 runs were performed, six for each
Reynolds number. It should be stressed that, except for the Reynolds number and the type
of upwinding, all runs were identical. The results of these runs are summarized in Figure 12.
This �gure displays the �uid �ow visualization at t=0:035s using each of the schemes above
for each Reynolds number. Row CD shows the results obtained by the CD approach and
row FOU displays the results of the FOU scheme. In the same way, rows QUICK, SMART,
VONOS and HLPA show the corresponding results of the QUICK, SMART, VONOS and
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Figure 14. Front view of the numerical simulations of two jets impinging onto a horizontal �at surface
(Re=103): (a) axisymmetric jet at t=0:035 s; (b) planar jet at t=0:045 s.

Figure 15. 3D view of the numerical simulation of a circular-hydraulic jump at t=0:30 s, Re=4×102
and Fr=1:785: (a) FOU; (b) SMART; (c) HLPA and (d) VONOS.

HLPA methods, respectively. Due to instability, some schemes (e.g. CD and QUICK) did not
reach the �nal time (t=0:035 s), when the Reynolds number became su�ciently large.

7.2. Simulation of the planar jet

A planar jet of viscous �uid was projected onto a horizontal surface with a prescribed velocity.
The following input data were employed:
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• Domain dimensions: 0:04 m× 0:06 m× 0:05 m;
• Mesh size: 80× 120× 100 cells (�x= �y= �z=0:0005 m);
• Flat surface dimensions: 0:04 m× 0:06 m× 0:0015 m;
• In�ow dimensions: 0:004 m× 0:04 m and height (h)=0:005 m. The in�ow is situated at
a distance of 0:45 m above the �at surface;

• In�ow velocity: U0 = 1 ms−1;
• Scaling parameters: U0 = 1 ms−1; D=0:004 m;
• Gravity was acting in the z-direction, with g=−9:81 ms−2;
• Froude number: Fr=5:048;
• Convergence criterion for the conjugate gradient method: EPS=10−8.
The code was run on this problem with the above input data. The values of the coe�cient

of viscosity were �=4× 10−4, 4× 10−5 and 4× 10−6 m2 s−1, which resulted in Reynolds
numbers of Re=10, 102 and 103, respectively. A time-step size of �t≈ 10−6 s was used in
all these runs. Figure 13 displays the results of the various schemes at time t=0:045 s.

7.3. Simulation of the circular-hydraulic jump

An axisymmetric jet of viscous �uid was projected onto a horizontal surface with an appro-
priate prescribed velocity, so that a hydraulic jump would occur. The following input data
were used in this simulation:

• Domain dimensions: 0:1 m× 0:1 m× 0:1 m;
• Mesh size: 100× 100× 100 cells (�x= �y= �z=0:001 m);
• Solid surface dimensions: 0:1 m× 0:1 m× 0:0015 m;
• In�ow dimensions: diameter (D)=0:008m and height (h)=0:02m. The in�ow is situated
at a distance of 0:048 m above of the solid surface;

• In�ow velocity: U0 = 0:05 ms−1;
• Scaling parameters: U0 = 0:05 ms−1, D=0:008 m;
• Gravity was acting in the z-direction, with g=−9:81 ms−2;
• Kinematic viscosity: �=10−5 m2 s−1;
• Froude number: Fr=1:785;
• Reynolds number: Re=400;
• Convergence criterion for the conjugate gradient method: EPS=10−8.
The Free�ow3D code was run on this problem with the above input data for the various

convection schemes presented in Section 3. We point out that the CD and the QUICK schemes
failed as the jet was destroyed due to numerical instabilities. The other schemes; namely,
FOU, SMART, HLPA and VONOS, did not display any instability and the phenomenon of
the hydraulic jump was successfully simulated. Figure 15 exhibits a three-dimensional view
of the results of these runs at time t=0:30 s.
As we can see from Figures 12 and 13 for low-Reynolds number (Re=10), the six schemes

produced similar results, with no sign of numerical instability. However, as the Reynolds num-
ber was increased, both CD and QUICK caused the methods to fail to converge due to nu-
merical instabilities. Indeed, from these �gures, it can be observed that the CD method failed
for the axisymmetric jet at Re=103, and also failed for the simulation of the planar jet at
Re=102 and Re=103. The QUICK scheme, although a third-order method, could not cope
with a high-Reynolds number jet. This might have been expected of these schemes, since
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Figure 16. Axisymmetric geometry showing parameters and dimensions: D=0:02 m;
U0 = 0:75 m s−1, h=0:01; d=0:005; b=0:00375.

they do not unconditionally satisfy the CBC. On the other hand, FOU, SMART, VONOS
and HLPA produced oscillation-free results at high-Reynolds numbers (e.g. Re=103). Nev-
ertheless, as one can infer from the pictures the FOU scheme introduces signi�cant arti�cial
viscosity; this is more visible for the case of Re=103, where one can observe that the jet
does not spread out as much as the SMART, VONOS or HLPA schemes. This is more no-
ticeable when we look at the front view for both axisymmetric and planar jets, as shown in
Figure 14.
In the simulation of the complex �ow of a circular-hydraulic jump, the CD and QUICK

schemes did not succeed. The other schemes FOU, SMART, VONOS and HLPA coped
well with this problem and did not display any numerical instabilities. However, as we can
see in Figure 15, the FOU scheme did not produce a circular radius due, we believe, to
excessive numerical dissipation. SMART, VONOS and HLPA presented a good simulation
of the circular-hydraulic jump. This con�rms the usefulness of these upwind schemes for
simulating complicated free-surface �ows since they are at least second-order accurate, satisfy
the CBC and introduce less numerical viscosity than FOU.

7.4. Comparison between the axisymmetric and 3D numerical simulations

We conclude this paper by comparing a full 3D numerical simulation with the axisym-
metric one. In both the axisymmetric and the 3D codes, the FOU and VONOS schemes
were used for the simulation of the circular-hydraulic jump with the geometry and parame-
ters shown in Figure 16. In order to compare the 3D and the axisymmetric solutions with
Watson’s solution, the position r= r1 of the jump, given by Equations (5) and (6), was
computed. The parameters of the simulations were Re=150 and Fr=1:693. The mesh sizes
used were 55× 22 cells (�r= �z=0:00125 m) in the axisymmetric case and 110× 110× 22
cells (�x= �y= �z=0:00125m) in the 3D problem. Figure 11(a) shows the geometry of the
equivalent 3D problem and the �uid �owing on the open-box container at time t=0:138 s.
From this �gure we see that both the rigid-boundary on which the �uid is impinging and
the out�ow-boundary through which the �uid is leaving are square. Figure 11(b) shows the
free-surface of the �ow computed with the VONOS scheme at �nal time t=0:588 s. Next,
several di�erent cross-sections from the 3D simulation are compared with the axisymmetric
calculations.
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Figure 17. 3D-transient free-surface pro�le along the x− z plane at position y = 0:0.

Figure 18. Comparison, at time t=0:588 s, between the 3D free-surface pro�le along the x–z plane at
position y=0:0 and axisymmetric pro�le.

Figure 17 shows the time-dependent free-surface pro�le, along the x–z plane at position
y=0:0, for the 3D simulation using the VONOS scheme. It can be inferred, from this �gure,
that the location of the jump approaches the steady-state value given by the axisymmetric
simulation. We have not been able to reach the 3D steady-state solution due to machine-
memory limitations; at the last time level (t=0:588 s) the memory requirements exceeded
1:3 GB.
Figure 18 displays a comparison between the 3D free-surface pro�le, along the x–z plane at

position y=0:0, and the axisymmetric results, both using the VONOS scheme. The agreement
between the two pro�les is good, even though the 3D-container has been chosen to be a square
and not a cylindrical-open box.
We compare several di�erent cross-sections from the 3D results with the axisymmetric

results to bring out grid orientation e�ects. Figure 19 displays cross-sections of the 3D simu-
lation with the VONOS scheme at planes 30, 45 and 90 degrees with respect to the x–z plane.
These cross-sections show that the distance of the jump location to the stagnation points is the
same for the three cross-sections. Furthermore, there is a good agreement between these free-
surface pro�les and that shown in Figure 18 with 0 degree rotation. The small di�erences in
the length of the �ow downstream of the jump, appearing in the 30◦ and 45◦ pro�les, would
appear to be by the fact that the container cross-section in the 3D simulation is not circular,
but square.
Finally, Figures 20 and 21 show respectively cross-sections, parallel to the x–y plane at

the vertical location z=0:01247, of the 3D numerical solution using the VONOS and FOU
schemes. This location corresponds to the average between the location of the free-surface
before and after the jump, i.e., the location of the middle point of the jump. For compari-
son, both cross-sections are overlayed with the equivalent axisymmetric solution of the same
problem, and the approximate analytical location of the jump (r1 = 0:03308). Once more the
agreement between the two numerical solutions by using the VONOS scheme is really quite
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Figure 19. Cross-sections of the 3D free-surface simulation. The top, middle, and bottom pro�les
correspond to the 30, 45 and 90 degree rotations, respectively.

Figure 20. Parallel cross-sections to the x–y plane, at position z=0:01247, of the 3D and axisymmetric
numerical solutions, and approximate analytical value of the jump position. The VONOS scheme was

used to discretize the convective terms.

good. It can also be observed that the VONOS scheme produces an almost perfectly circular
hydraulic jump, indicating that grid orientation e�ects are small. On the other hand, the FOU
scheme is particularly poor in this regard.

8. DISCUSSION OF THE RESULTS AND CONCLUSIONS

In this paper we have introduced the axisymmetric GENSMAC and the Free�ow3D codes,
two closely related computer programs based on the marker and cell ideas. These codes have
been adapted to employ di�erent high-order upwind discretizations. One of the main purposes
of this paper was to e�ect a comparison between the many existing convective approximations
on a real problem.
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Figure 21. Parallel cross-sections to the x–y plane, at position z=0:01247, of the 3D and approximate
analytical value of the jump position. The FOU scheme was used to discretize the convective terms.

The real problem chosen was the circular-hydraulic jump. The single and double roller in
the jump were simulated by the axisymmetric GENSMAC and displayed qualitative agree-
ment with the experimental observations. A comparison was also made with the approximate
analytical solutions given by Watson and a quantitative agreement was obtained.
We are conscious that the numerical experiments described in this paper are not enough

to fully validate Free�ow3D. This is at present di�cult as mesh re�nement soon becomes
intractable. However, we would argue that there has been a degree of qualitative validation.
Figure 11(b) displays the hydraulic jump in the same radial position as that given by the
axisymmetric code. There is also qualitative agreement with Watson’s results, although one
would be wise to regard this with some caution. Previous work [2] on the 3D code displayed
three-dimensional jet buckling with coiling as well as planar folding which are at least credible
and what we expect from our earlier experimental work [38].
The best, and possibly the only acceptable, upwind methods emerging from this study are

SMART, VONOS and HLPA. These composite di�erencing schemes for the convection terms
are a good compromise between numerical stability and accuracy. On the other hand, both
CD and QUICK broke down, while the FOU always worked but it always introduced too
much arti�cial viscosity.
It is perhaps worth emphasizing that the circular-hydraulic jump obtained from Free�ow3D

uses x; y and z coordinates and has no in-built assumption of axisymmetry. Thus, in prin-
ciple, it should be capable of capturing polygonal-hydraulic jumps that were observed by
Craik et al. [15] and, more recently, by Ellegaard et al. [20; 21].
A hydraulic jump is a relatively abrupt phenomenon described by a nonlinear interaction

between the e�ects of viscosity and the inviscid mechanisms of surface tension, cross-stream
pressure gradients induced by streamline curvature, and gravity. Both the codes discussed
here do not as yet have surface tension implemented. However, this work is underway and
we believe we are not far away from capturing, and possibly completely characterizing the
hydraulic jump at least for moderate Reynolds numbers.
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